Efficient Identification of Approximate Best Configuration of Training in Large Datasets

Silu Huang¹, Chi Wang², Bolin Ding³, Surajit Chaudhuri²

¹University of Illinois (UIUC) ²Microsoft Research ³Alibaba Group

Work done in Microsoft
Background: **Large Configuration Space**

Machine Learning Pipeline

- Data Loading
- Data/Feature Preprocessing
- Model Selection
- Hyperparameter Tuning
- Score Evaluation

So **MANY** choices
- Which transformation?
- Which model?
- Which hyperparameters?
Related Work: **AutoML**

Machine Learning Pipeline

- Data Loading
- Data/Feature Preprocessing
- Model Selection
- Hyperparameter Tuning
- Score Evaluation

AutoML

- Bayesian Optimization
- Meta Learning
- Successive-halving
Motivation: Large Scale Dataset

Even running one single configuration is time-consuming

Sampling ➔ Extrapolate over training set size?

Different perspective

Related works:

Bayesian ➔ Extrapolate across model configurations

Meta Learning ➔ Combined as our input

Successive-halving ➔ Heuristic, no guarantee
Problem: **Approximate Configuration Identification**

Input
- A set of candidate configurations

Output
- Best configuration
- Approximate best configuration
- Tolerance

\[A(\text{best}) - A(\text{approximate best}) \leq \varepsilon \]
Outline

• CI-based Framework

• CI Estimator

• Scheduler

• Experimental Evaluation
Outline

- CI-based Framework
 - CI Estimator
 - Scheduler
- Experimental Evaluation
Preliminary Exp: Learning Curve

FlightDelay:
7.3M Records
630 Attributes
Preliminary Exp: Learning Curve

Naïve plateau estimator is error-prone

FlightDelay:
7.3M Records
630 Attributes
Proposal: CI-based framework

Each Probe: Lower Bound → Upper Bound

Non-Overlapping ⇒ Prune C_2

C_1 C_2

Large Small
Proposal: CI-based framework

C_1 C_2 C_3 C_4 C_5
Outline

• CI-based Framework

• CI Estimator

• Scheduler

• Experimental Evaluation
Single Configuration: CI Estimator

1. **Training Dataset**
 - Train Model: A_{tn}
 - Evaluate Model: A_{te}

2. **Sampled Training Dataset**
 - Training Accuracy: A_{tn}
 - Test Accuracy: A_{te}

3. **Test Dataset**
 - Sampled Test Dataset

4. **CI Estimator**
 - Upper Bound: A_{tn}
 - Lower Bound: A_{te}
Fitness Assumption:

\[D \rightarrow H \]
\[D' \rightarrow H' \]

Then, \(A(H, D) \geq A(H', D) \)

With Probability at least \((1 - \delta)\)
Outline

• CI-based Framework

• CI Estimator

• Scheduler

• Experimental Evaluation
Multi Configurations: Scheduler

What’s the Probe Sequence among all Configurations?

C_1, C_2, C_3, C_4, C_5
Scheduler: Lagrange Multiplier Method

Minimize: \(\sum t_i \)

Identify the Best Configuration

s.t.

\[u_2 \leq l_1 \]
\[u_3 \leq l_1 \]
[...]

\[u_m \leq l_1 \]

Apply Lagrange Method

Two Conditions:

\[\frac{dt_1}{dl_1} = -\left(\frac{dt_2}{du_2} + \cdots + \frac{dt_m}{du_m} \right) \]

\[l_1 = u_2 = \cdots = u_m \]
Multi Configurations: Scheduler

Optimal Solution

\[
\frac{dt_1}{dl_1} = -\left(\frac{dt_2}{du_2} + \cdots + \frac{dt_n}{du_n} \right)
\]

\[l_1 = u_2 = \cdots = u_n\]

Make a Guess on the best configuration \(C_1\)

- If \(\frac{dt_1}{dl_1} > -\sum_{i=2}^{n} \frac{dt_i}{du_i}\), then
- **No**: Probe \(C_1\)
- **Yes**:
 - **Probe \(C_1^*\) with second highest upper bound**
 - Based on \(u_2 = \cdots = u_n\)

Highest upper bound
Outline

• CI-based Framework

• CI Estimator

• Scheduler

• Experimental Evaluation
Datasets

| Dataset | \(|D| \) | \(|F| \) | Origin |
|----------------|--------|--------|---|
| TwitterSentiment | 1.4M | 9866 | Twitter, Stanford |
| FlightDelay | 7.3M | 630 | U.S. Department of Transportation |
| NYCTaxi | 10M | 21 | NYC Taxi & Limousine Commission |
| HEPMASS | 10M | 28 | UCI |
| HIGGS | 10.6M | 28 | UCI |
Experiments

• Experiment I: Efficiency Compared to Full Run
• Experiment II: Effectiveness Compared to Full Run
• Experiment III: Compare with Successive-Halving
ABC vs. Full-run: Efficiency Comparison
ABC vs. Full-run: Effectiveness Comparison

![Graph showing test accuracy comparison between Full-run and ABC across different datasets and configurations.](image-url)
ABC vs. Successive-halving: Efficiency & Effectiveness

- CI-based pruning
- Successive-halving
ABC vs. Successive-halving: ϵ-Guarantee